I have a huge list of datetime strings like the following
["Jun 1 2005 1:33PM", "Aug 28 1999 12:00AM"]
How do I convert them into datetime
objects?
strptime()
will drive you nuts, unless you wrap it. See my answer, based on Or Weis answer to this - anyone datetime.strptime
as others have mentioned. For those who prefer a video explanation, see here. - anyone datetime.strptime
parses an input string in the user-specified format into a timezone-naive datetime
object:
>>> from datetime import datetime
>>> datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
datetime.datetime(2005, 6, 1, 13, 33)
To obtain a date
object using an existing datetime
object, convert it using .date()
:
>>> datetime.strptime('Jun 1 2005', '%b %d %Y').date()
date(2005, 6, 1)
Links:
strftime.org format string cheatsheet
Notes:
strptime
= "string parse time"strftime
= "string format time"Answered 2023-09-20 20:22:55
date
instead of a datetime
, going through datetime
handles it nicely: datetime.strptime('Jun 1 2005', '%b %d %Y').date() == date(2005, 6, 1)
- anyone datetime
object by adding this line in Python 3: from datetime import timezone; datetime_object = datetime_object.replace(tzinfo=timezone.utc)
- anyone Use the third-party dateutil
library:
from dateutil import parser
parser.parse("Aug 28 1999 12:00AM") # datetime.datetime(1999, 8, 28, 0, 0)
It can handle most date formats and is more convenient than strptime
since it usually guesses the correct format. It is also very useful for writing tests, where readability is more important than performance.
Install it with:
pip install python-dateutil
Answered 2023-09-20 20:22:55
June 2009
instead of 12 June 2009
, it would assume any arbitrary day. Same goes for dates without month. - anyone Check out strptime in the time module. It is the inverse of strftime.
$ python
>>> import time
>>> my_time = time.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
time.struct_time(tm_year=2005, tm_mon=6, tm_mday=1,
tm_hour=13, tm_min=33, tm_sec=0,
tm_wday=2, tm_yday=152, tm_isdst=-1)
timestamp = time.mktime(my_time)
# convert time object to datetime
from datetime import datetime
my_datetime = datetime.fromtimestamp(timestamp)
# convert time object to date
from datetime import date
my_date = date.fromtimestamp(timestamp)
Answered 2023-09-20 20:22:55
To convert a YYYY-MM-DD string to a datetime object, datetime.fromisoformat could be used.
from datetime import datetime
date_string = "2012-12-12 10:10:10"
print (datetime.fromisoformat(date_string))
2012-12-12 10:10:10
Caution from the documentation:
This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse operation of
datetime.isoformat()
. A more full-featured ISO 8601 parser,dateutil.parser.isoparse
is available in the third-party packagedateutil
.
Answered 2023-09-20 20:22:55
fromisoformat()
seems to return timezone unaware datetime format in my case. So subtracting from datetime.datetime.now()
gives you error. See this,stackoverflow.com/questions/4530069/… - anyone fromisoformat
does return datetime
objects with timezone offsets in the right cases. See Python's documentation: docs.python.org/3/library/… - anyone I have put together a project that can convert some really neat expressions. Check out timestring.
pip install timestring
>>> import timestring
>>> timestring.Date('monday, aug 15th 2015 at 8:40 pm')
<timestring.Date 2015-08-15 20:40:00 4491909392>
>>> timestring.Date('monday, aug 15th 2015 at 8:40 pm').date
datetime.datetime(2015, 8, 15, 20, 40)
>>> timestring.Range('next week')
<timestring.Range From 03/10/14 00:00:00 to 03/03/14 00:00:00 4496004880>
>>> (timestring.Range('next week').start.date, timestring.Range('next week').end.date)
(datetime.datetime(2014, 3, 10, 0, 0), datetime.datetime(2014, 3, 14, 0, 0))
Answered 2023-09-20 20:22:55
Remember this and you didn't need to get confused in datetime conversion again.
String to datetime object = strptime
datetime object to other formats = strftime
Jun 1 2005 1:33PM
is equals to
%b %d %Y %I:%M%p
%b Month as locale’s abbreviated name(Jun)
%d Day of the month as a zero-padded decimal number(1)
%Y Year with century as a decimal number(2015)
%I Hour (12-hour clock) as a zero-padded decimal number(01)
%M Minute as a zero-padded decimal number(33)
%p Locale’s equivalent of either AM or PM(PM)
so you need strptime i-e converting string
to
>>> dates = []
>>> dates.append('Jun 1 2005 1:33PM')
>>> dates.append('Aug 28 1999 12:00AM')
>>> from datetime import datetime
>>> for d in dates:
... date = datetime.strptime(d, '%b %d %Y %I:%M%p')
... print type(date)
... print date
...
Output
<type 'datetime.datetime'>
2005-06-01 13:33:00
<type 'datetime.datetime'>
1999-08-28 00:00:00
What if you have different format of dates you can use panda or dateutil.parse
>>> import dateutil
>>> dates = []
>>> dates.append('12 1 2017')
>>> dates.append('1 1 2017')
>>> dates.append('1 12 2017')
>>> dates.append('June 1 2017 1:30:00AM')
>>> [parser.parse(x) for x in dates]
OutPut
[datetime.datetime(2017, 12, 1, 0, 0), datetime.datetime(2017, 1, 1, 0, 0), datetime.datetime(2017, 1, 12, 0, 0), datetime.datetime(2017, 6, 1, 1, 30)]
Answered 2023-09-20 20:22:55
Many timestamps have an implied timezone. To ensure that your code will work in every timezone, you should use UTC internally and attach a timezone each time a foreign object enters the system.
Python 3.2+:
>>> datetime.datetime.strptime(
... "March 5, 2014, 20:13:50", "%B %d, %Y, %H:%M:%S"
... ).replace(tzinfo=datetime.timezone(datetime.timedelta(hours=-3)))
This assumes you know the offset. If you don't, but you know e.g. the location, you can use the pytz
package to query the IANA time zone database for the offset. I'll use Tehran here as an example because it has a half-hour offset:
>>> tehran = pytz.timezone("Asia/Tehran")
>>> local_time = tehran.localize(
... datetime.datetime.strptime("March 5, 2014, 20:13:50",
... "%B %d, %Y, %H:%M:%S")
... )
>>> local_time
datetime.datetime(2014, 3, 5, 20, 13, 50, tzinfo=<DstTzInfo 'Asia/Tehran' +0330+3:30:00 STD>)
As you can see, pytz
has determined that the offset was +3:30 at that particular date. You can now convert this to UTC time, and it will apply the offset:
>>> utc_time = local_time.astimezone(pytz.utc)
>>> utc_time
datetime.datetime(2014, 3, 5, 16, 43, 50, tzinfo=<UTC>)
Note that dates before the adoption of timezones will give you weird offsets. This is because the IANA has decided to use Local Mean Time:
>>> chicago = pytz.timezone("America/Chicago")
>>> weird_time = chicago.localize(
... datetime.datetime.strptime("November 18, 1883, 11:00:00",
... "%B %d, %Y, %H:%M:%S")
... )
>>> weird_time.astimezone(pytz.utc)
datetime.datetime(1883, 11, 18, 7, 34, tzinfo=<UTC>)
The weird "7 hours and 34 minutes" are derived from the longitude of Chicago. I used this timestamp because it is right before standardized time was adopted in Chicago.
Answered 2023-09-20 20:22:55
If your string is in ISO 8601 format and you have Python 3.7+, you can use the following simple code:
import datetime
aDate = datetime.date.fromisoformat('2020-10-04')
for dates and
import datetime
aDateTime = datetime.datetime.fromisoformat('2020-10-04 22:47:00')
for strings containing date and time. If timestamps are included, the function datetime.datetime.isoformat()
supports the following format:
YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]
Where *
matches any single character. See also here and here.
Answered 2023-09-20 20:22:55
Here are two solutions using Pandas to convert dates formatted as strings into datetime.date objects.
import pandas as pd
dates = ['2015-12-25', '2015-12-26']
# 1) Use a list comprehension.
>>> [d.date() for d in pd.to_datetime(dates)]
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
# 2) Convert the dates to a DatetimeIndex and extract the python dates.
>>> pd.DatetimeIndex(dates).date.tolist()
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
Timings
dates = pd.DatetimeIndex(start='2000-1-1', end='2010-1-1', freq='d').date.tolist()
>>> %timeit [d.date() for d in pd.to_datetime(dates)]
# 100 loops, best of 3: 3.11 ms per loop
>>> %timeit pd.DatetimeIndex(dates).date.tolist()
# 100 loops, best of 3: 6.85 ms per loop
And here is how to convert the OP's original date-time examples:
datetimes = ['Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM']
>>> pd.to_datetime(datetimes).to_pydatetime().tolist()
[datetime.datetime(2005, 6, 1, 13, 33),
datetime.datetime(1999, 8, 28, 0, 0)]
There are many options for converting from the strings to Pandas Timestamps using to_datetime
, so check the docs if you need anything special.
Likewise, Timestamps have many properties and methods that can be accessed in addition to .date
Answered 2023-09-20 20:22:55
pd.DatetimeIndex(dates).date.tolist()
runs about 3x faster than [d.date() for d in pd.to_datetime(dates)]
on my machine. - anyone I personally like the solution using the parser
module, which is the second answer to this question and is beautiful, as you don't have to construct any string literals to get it working. But, one downside is that it is 90% slower than the accepted answer with strptime
.
from dateutil import parser
from datetime import datetime
import timeit
def dt():
dt = parser.parse("Jun 1 2005 1:33PM")
def strptime():
datetime_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
print(timeit.timeit(stmt=dt, number=10**5))
print(timeit.timeit(stmt=strptime, number=10**5))
Output:
10.70296801342902
1.3627995655316933
As long as you are not doing this a million times over and over again, I still think the parser
method is more convenient and will handle most of the time formats automatically.
Answered 2023-09-20 20:22:55
Something that isn't mentioned here and is useful: adding a suffix to the day. I decoupled the suffix logic so you can use it for any number you like, not just dates.
import time
def num_suffix(n):
'''
Returns the suffix for any given int
'''
suf = ('th','st', 'nd', 'rd')
n = abs(n) # wise guy
tens = int(str(n)[-2:])
units = n % 10
if tens > 10 and tens < 20:
return suf[0] # teens with 'th'
elif units <= 3:
return suf[units]
else:
return suf[0] # 'th'
def day_suffix(t):
'''
Returns the suffix of the given struct_time day
'''
return num_suffix(t.tm_mday)
# Examples
print num_suffix(123)
print num_suffix(3431)
print num_suffix(1234)
print ''
print day_suffix(time.strptime("1 Dec 00", "%d %b %y"))
print day_suffix(time.strptime("2 Nov 01", "%d %b %y"))
print day_suffix(time.strptime("3 Oct 02", "%d %b %y"))
print day_suffix(time.strptime("4 Sep 03", "%d %b %y"))
print day_suffix(time.strptime("13 Nov 90", "%d %b %y"))
print day_suffix(time.strptime("14 Oct 10", "%d %b %y"))
Answered 2023-09-20 20:22:55
In [34]: import datetime
In [35]: _now = datetime.datetime.now()
In [36]: _now
Out[36]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [37]: print _now
2016-01-19 09:47:00.432000
In [38]: _parsed = datetime.datetime.strptime(str(_now),"%Y-%m-%d %H:%M:%S.%f")
In [39]: _parsed
Out[39]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [40]: assert _now == _parsed
Answered 2023-09-20 20:22:55
Django Timezone aware datetime object example.
import datetime
from django.utils.timezone import get_current_timezone
tz = get_current_timezone()
format = '%b %d %Y %I:%M%p'
date_object = datetime.datetime.strptime('Jun 1 2005 1:33PM', format)
date_obj = tz.localize(date_object)
This conversion is very important for Django and Python when you have USE_TZ = True
:
RuntimeWarning: DateTimeField MyModel.created received a naive datetime (2016-03-04 00:00:00) while time zone support is active.
Answered 2023-09-20 20:22:55
Create a small utility function like:
def date(datestr="", format="%Y-%m-%d"):
from datetime import datetime
if not datestr:
return datetime.today().date()
return datetime.strptime(datestr, format).date()
This is versatile enough:
Answered 2023-09-20 20:22:55
This would be helpful for converting a string to datetime and also with a time zone:
def convert_string_to_time(date_string, timezone):
from datetime import datetime
import pytz
date_time_obj = datetime.strptime(date_string[:26], '%Y-%m-%d %H:%M:%S.%f')
date_time_obj_timezone = pytz.timezone(timezone).localize(date_time_obj)
return date_time_obj_timezone
date = '2018-08-14 13:09:24.543953+00:00'
TIME_ZONE = 'UTC'
date_time_obj_timezone = convert_string_to_time(date, TIME_ZONE)
Answered 2023-09-20 20:22:55
arrow offers many useful functions for dates and times. This bit of code provides an answer to the question and shows that arrow is also capable of formatting dates easily and displaying information for other locales.
>>> import arrow
>>> dateStrings = [ 'Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM' ]
>>> for dateString in dateStrings:
... dateString
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').datetime
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').format('ddd, Do MMM YYYY HH:mm')
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').humanize(locale='de')
...
'Jun 1 2005 1:33PM'
datetime.datetime(2005, 6, 1, 13, 33, tzinfo=tzutc())
'Wed, 1st Jun 2005 13:33'
'vor 11 Jahren'
'Aug 28 1999 12:00AM'
datetime.datetime(1999, 8, 28, 0, 0, tzinfo=tzutc())
'Sat, 28th Aug 1999 00:00'
'vor 17 Jahren'
See http://arrow.readthedocs.io/en/latest/ for more.
Answered 2023-09-20 20:22:55
You can also check out dateparser
:
dateparser
provides modules to easily parse localized dates in almost any string formats commonly found on web pages.
Install:
pip install dateparser
This is, I think, the easiest way you can parse dates.
The most straightforward way is to use the
dateparser.parse
function, that wraps around most of the functionality in the module.
Sample code:
import dateparser
t1 = 'Jun 1 2005 1:33PM'
t2 = 'Aug 28 1999 12:00AM'
dt1 = dateparser.parse(t1)
dt2 = dateparser.parse(t2)
print(dt1)
print(dt2)
Output:
2005-06-01 13:33:00
1999-08-28 00:00:00
Answered 2023-09-20 20:22:55
You can use easy_date to make it easy:
import date_converter
converted_date = date_converter.string_to_datetime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
Answered 2023-09-20 20:22:55
If you want only date format then you can manually convert it by passing your individual fields like:
>>> import datetime
>>> date = datetime.date(int('2017'),int('12'),int('21'))
>>> date
datetime.date(2017, 12, 21)
>>> type(date)
<type 'datetime.date'>
You can pass your split string values to convert it into date type like:
selected_month_rec = '2017-09-01'
date_formate = datetime.date(int(selected_month_rec.split('-')[0]),int(selected_month_rec.split('-')[1]),int(selected_month_rec.split('-')[2]))
You will get the resulting value in date format.
Answered 2023-09-20 20:22:55
Similar to Javed's answer, I just wanted date from string - so combining Simon's and Javed's logic, we get:
from dateutil import parser
import datetime
s = '2021-03-04'
parser.parse(s).date()
Output
datetime.date(2021, 3, 4)
Answered 2023-09-20 20:22:55
It seems using pandas Timestamp is the fastest:
import pandas as pd
N = 1000
l = ['Jun 1 2005 1:33PM'] * N
list(pd.to_datetime(l, format=format))
%timeit _ = list(pd.to_datetime(l, format=format))
1.58 ms ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
from datetime import datetime
%timeit _ = list(map(lambda x: datetime.strptime(x, format), l))
9.41 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
from dateutil.parser import parse
%timeit _ = list(map(lambda x: parse(x), l))
73.8 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
If the string is an ISO 8601 string, please use csio8601:
import ciso8601
l = ['2014-01-09'] * N
%timeit _ = list(map(lambda x: ciso8601.parse_datetime(x), l))
186 µs ± 4.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Answered 2023-09-20 20:22:55
If you don't want to explicitly specify which format your string is in with respect to the date time format, you can use this hack to by pass that step:
from dateutil.parser import parse
# Function that'll guess the format and convert it into the python datetime format
def update_event(start_datetime=None, end_datetime=None, description=None):
if start_datetime is not None:
new_start_time = parse(start_datetime)
return new_start_time
# Sample input dates in different formats
d = ['06/07/2021 06:40:23.277000', '06/07/2021 06:40', '06/07/2021']
new = [update_event(i) for i in d]
for date in new:
print(date)
# Sample output dates in Python datetime object
# 2014-04-23 00:00:00
# 2013-04-24 00:00:00
# 2014-04-25 00:00:00
If you want to convert it into some other datetime format, just modify the last line with the format you like for example something like date.strftime('%Y/%m/%d %H:%M:%S.%f')
:
from dateutil.parser import parse
def update_event(start_datetime=None, end_datetime=None, description=None):
if start_datetime is not None:
new_start_time = parse(start_datetime)
return new_start_time
# Sample input dates in different formats
d = ['06/07/2021 06:40:23.277000', '06/07/2021 06:40', '06/07/2021']
# Passing the dates one by one through the function
new = [update_event(i) for i in d]
for date in new:
print(date.strftime('%Y/%m/%d %H:%M:%S.%f'))
# Sample output dates in required Python datetime object
# 2021/06/07 06:40:23.277000
# 2021/06/07 06:40:00.000000
# 2021/06/07 00:00:00.000000
Try running the above snippet to have a better clarity.
Answered 2023-09-20 20:22:55
See my answer.
In real-world data this is a real problem: multiple, mismatched, incomplete, inconsistent and multilanguage/region date formats, often mixed freely in one dataset. It's not ok for production code to fail, let alone go exception-happy like a fox.
We need to try...catch multiple datetime formats fmt1,fmt2,...,fmtn and suppress/handle the exceptions (from strptime()
) for all those that mismatch (and in particular, avoid needing a yukky n-deep indented ladder of try..catch clauses). From my solution
def try_strptime(s, fmts=['%d-%b-%y','%m/%d/%Y']):
for fmt in fmts:
try:
return datetime.strptime(s, fmt)
except:
continue
return None # or reraise the ValueError if no format matched, if you prefer
Answered 2023-09-20 20:22:55
A short sample mapping a yyyy-mm-dd date string to a datetime.date object:
from datetime import date
date_from_yyyy_mm_dd = lambda δ : date(*[int(_) for _ in δ.split('-')])
date_object = date_from_yyyy_mm_dd('2021-02-15')
Answered 2023-09-20 20:22:55
Use:
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()
It shows "Start Date Time" Column and "Last Login Time" both are "object = strings" in data-frame:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null object
Last Login Time 1000 non-null object
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB
By using the parse_dates
option in read_csv
mention, you can convert your string datetime into the pandas datetime format.
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null datetime64[ns]
Last Login Time 1000 non-null datetime64[ns]
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB
Answered 2023-09-20 20:22:55
You can take a look at all possible datetime formats at https://strftime.org/.
If you have multiple strings to convert into datetime objects, you can either use a list comprehension or map datetime.strptime
.
from datetime import datetime
from itertools import repeat
from dateutil import parser
dates = ["Jun 1 2005 1:33PM", "Jun 3 2005 1:33PM"]
# use list comprehension
parsed_dates = [datetime.strptime(d, '%b %d %Y %I:%M%p') for d in dates]
# map the parser function
parsed_dates = list(map(datetime.strptime, dates, repeat('%b %d %Y %I:%M%p')))
# map parser.parse
parsed_dates = list(map(parser.parse, dates))
At least as of Python 3.10, mapping a built-in method like datetime.strptime
is faster than a list comprehension. Also, it's probably worth mentioning that dateutil.parser
is about 7 times slower than datetime.strptime
which is really important if you need to parse many datetime strings.
If performance is an issue, a popular third-party library pandas
offers to_datetime
function that parses datetime strings really fast. It's over 2 times faster than datetime.strptime
in a loop (even if you have to convert the pandas object back into a Python list). A nice thing about it is that when parsing duplicate date strings, unique converted dates are cached, so there's a significant speed-up. In the example below, the list with duplicate datetime strings are parsed 4 times faster than the list with unique datetime strings (so it's 8 times faster than datetime.strptime
).
import pandas as pd
dates = pd.date_range('2000', '2020', 1000000).strftime('%b %d %Y %I:%M%p').tolist()
%timeit _ = pd.to_datetime(dates, format='%b %d %Y %I:%M%p').tolist()
# 4.73 s ± 41.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit _ = [datetime.strptime(d, '%b %d %Y %I:%M%p') for d in dates]
# 9.73 s ± 48.5 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit _ = list(map(datetime.strptime, dates, repeat('%b %d %Y %I:%M%p')))
# 9.63 s ± 23.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# with duplicate dates, it's even faster
dates = pd.date_range('2000-1-1', '2000-1-2', 1000000).strftime('%b %d %Y %I:%M%p').tolist()
%timeit _ = pd.to_datetime(dates, format='%b %d %Y %I:%M%p').tolist()
# 1.16 s ± 8.11 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Answered 2023-09-20 20:22:55
#Convert String to datetime
>>> x=datetime.strptime('Jun 1 2005', '%b %d %Y').date()
>>> print(x,type(x))
2005-06-01 00:00:00 <class 'datetime.datetime'>
#Convert datetime to String (Reverse above process)
>>> y=x.strftime('%b %d %Y')
>>> print(y,type(y))
Jun 01 2005 <class 'str'>
Answered 2023-09-20 20:22:55