Given a single item, how do I count occurrences of it in a list, in Python?
A related but different problem is counting occurrences of each different element in a collection, getting a dictionary or list as a histogram result instead of a single integer. For that problem, see Using a dictionary to count the items in a list.
.count
for every element which is O(n^2). Ideally those should be in (a) different Q&A(s), but for now they're here. - anyone If you only want a single item's count, use the count
method:
>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3
Each count
call goes over the entire list of n
elements. Calling count
in a loop n
times means n * n
total checks, which can be catastrophic for performance.
If you want to count multiple items, use Counter
, which only does n
total checks.
Answered 2023-09-20 20:56:14
mylist = [1,7,7,7,3,9,9,9,7,9,10,0] print sorted(set([i for i in mylist if mylist.count(i)>2]))
- anyone list.count()
, 0.53 seconds with numpy.unique(list, return_counts = True)
and 0.17 seconds with Counter
. The difference is striking. - anyone Use Counter
if you are using Python 2.7 or 3.x and you want the number of occurrences for each element:
>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})
Answered 2023-09-20 20:56:14
isinstance
. So if you are certain about the data that you're working with, it might be better to write a custom function without type and instance checking. - anyone isinstance
calls? Even with millions of strings, calling Counter
only involves one isinstance
call, to check whether its argument is a mapping. You most likely misjudged what's eating all your time. - anyone Counter
has gone into counting large iterables, rather than counting many iterables. Counting a million-string iterable will go faster with Counter
than with a manual implementation. If you want to call update
with many iterables, you may be able to speed things up by joining them into one iterable with itertools.chain
. - anyone x = Counter({'a':5, 'b':3, 'c':7})
x.most_common()
- anyone Counting the occurrences of one item in a list
For counting the occurrences of just one list item you can use count()
>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2
Counting the occurrences of all items in a list is also known as "tallying" a list, or creating a tally counter.
Counting all items with count()
To count the occurrences of items in l
one can simply use a list comprehension and the count()
method
[[x,l.count(x)] for x in set(l)]
(or similarly with a dictionary dict((x,l.count(x)) for x in set(l))
)
Example:
>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}
Counting all items with Counter()
Alternatively, there's the faster Counter
class from the collections
library
Counter(l)
Example:
>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})
How much faster is Counter?
I checked how much faster Counter
is for tallying lists. I tried both methods out with a few values of n
and it appears that Counter
is faster by a constant factor of approximately 2.
Here is the script I used:
from __future__ import print_function
import timeit
t1=timeit.Timer('Counter(l)', \
'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count(): ", t2.repeat(repeat=3,number=10000)
And the output:
Counter(): [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count(): [7.779430688009597, 7.962715800967999, 8.420845870045014]
Answered 2023-09-20 20:56:14
Counter
is way faster for bigger lists. The list comprehension method is O(n^2), Counter
should be O(n). - anyone isinstance
. So if you are certain about the data that you're working with, it might be better to write a custom function without type and instance checking. - anyone Another way to get the number of occurrences of each item, in a dictionary:
dict((i, a.count(i)) for i in a)
Answered 2023-09-20 20:56:14
n * (number of different items)
operations, not counting the time it takes to build the set. Using collections.Counter
is really much better. - anyone i
, because it will try to enter multiple keys of same value in a dictionary. dict((i, a.count(i)) for i in a)
- anyone dict([(1, 2), (1, 3)])
returns {1: 3}
- anyone Given an item, how can I count its occurrences in a list in Python?
Here's an example list:
>>> l = list('aaaaabbbbcccdde')
>>> l
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'e']
list.count
There's the list.count
method
>>> l.count('b')
4
This works fine for any list. Tuples have this method as well:
>>> t = tuple('aabbbffffff')
>>> t
('a', 'a', 'b', 'b', 'b', 'f', 'f', 'f', 'f', 'f', 'f')
>>> t.count('f')
6
collections.Counter
And then there's collections.Counter. You can dump any iterable into a Counter, not just a list, and the Counter will retain a data structure of the counts of the elements.
Usage:
>>> from collections import Counter
>>> c = Counter(l)
>>> c['b']
4
Counters are based on Python dictionaries, their keys are the elements, so the keys need to be hashable. They are basically like sets that allow redundant elements into them.
collections.Counter
You can add or subtract with iterables from your counter:
>>> c.update(list('bbb'))
>>> c['b']
7
>>> c.subtract(list('bbb'))
>>> c['b']
4
And you can do multi-set operations with the counter as well:
>>> c2 = Counter(list('aabbxyz'))
>>> c - c2 # set difference
Counter({'a': 3, 'c': 3, 'b': 2, 'd': 2, 'e': 1})
>>> c + c2 # addition of all elements
Counter({'a': 7, 'b': 6, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c | c2 # set union
Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c & c2 # set intersection
Counter({'a': 2, 'b': 2})
There are good builtin answers, but this example is slightly instructive. Here we sum all the occurences where the character, c, is equal to 'b'
:
>>> sum(c == 'b' for c in l)
4
Not great for this use-case, but if you need to have a count of iterables where the case is True
it works perfectly fine to sum the boolean results, since True
is equivalent to 1
.
Another answer suggests:
Why not use pandas?
Pandas is a common library, but it's not in the standard library. Adding it as a requirement is non-trivial.
There are builtin solutions for this use-case in the list object itself as well as in the standard library.
If your project does not already require pandas, it would be foolish to make it a requirement just for this functionality.
Answered 2023-09-20 20:56:14
I've compared all suggested solutions (and a few new ones) with perfplot (a small project of mine).
For large enough arrays, it turns out that
numpy.sum(numpy.array(a) == 1)
is slightly faster than the other solutions.
numpy.bincount(a)
is what you want.
Code to reproduce the plots:
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
perfplot.show(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2**k for k in range(20)],
kernels=[
counter, count, bincount, pandas_value_counts, occur_dict,
count_unsorted_list_items, operator_countof
],
equality_check=None,
logx=True,
logy=True,
)
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i] + 1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
b = perfplot.bench(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2 ** k for k in range(20)],
kernels=[
counter,
count,
bincount,
pandas_value_counts,
occur_dict,
count_unsorted_list_items,
operator_countof,
],
equality_check=None,
)
b.save("out.png")
b.show()
Answered 2023-09-20 20:56:14
numpy.random.randint(0, 100, n).tolist()
would be better. With your list(numpy.random.randint(0, 100, n))
you have NumPy ints in a Python list, which seems weird/unrealistic. - anyone list.count(x)
returns the number of times x
appears in a list
see: http://docs.python.org/tutorial/datastructures.html#more-on-lists
Answered 2023-09-20 20:56:14
If you want to count all values at once you can do it very fast using numpy arrays and bincount
as follows
import numpy as np
a = np.array([1, 2, 3, 4, 1, 4, 1])
np.bincount(a)
which gives
>>> array([0, 3, 1, 1, 2])
Answered 2023-09-20 20:56:14
bincount
works only on non-negative int
s, and it counts also all "missing values", so that the size of the result is 1+ max(a)
, which is quite large even if a
contains only the Julian Day of today, 2459893. - anyone Why not using Pandas?
import pandas as pd
my_list = ['a', 'b', 'c', 'd', 'a', 'd', 'a']
# converting the list to a Series and counting the values
my_count = pd.Series(my_list).value_counts()
my_count
Output:
a 3
d 2
b 1
c 1
dtype: int64
If you are looking for a count of a particular element, say a, try:
my_count['a']
Output:
3
Answered 2023-09-20 20:56:14
If you can use pandas
, then value_counts
is there for rescue.
>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1 3
4 2
3 1
2 1
dtype: int64
It automatically sorts the result based on frequency as well.
If you want the result to be in a list of list, do as below
>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]
Answered 2023-09-20 20:56:14
I had this problem today and rolled my own solution before I thought to check SO. This:
dict((i,a.count(i)) for i in a)
is really, really slow for large lists. My solution
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
is actually a bit faster than the Counter solution, at least for Python 2.7.
Answered 2023-09-20 20:56:14
itertools.groupby()
Antoher possiblity for getting the count of all elements in the list could be by means of itertools.groupby()
.
With "duplicate" counts
from itertools import groupby
L = ['a', 'a', 'a', 't', 'q', 'a', 'd', 'a', 'd', 'c'] # Input list
counts = [(i, len(list(c))) for i,c in groupby(L)] # Create value-count pairs as list of tuples
print(counts)
Returns
[('a', 3), ('t', 1), ('q', 1), ('a', 1), ('d', 1), ('a', 1), ('d', 1), ('c', 1)]
Notice how it combined the first three a
's as the first group, while other groups of a
are present further down the list. This happens because the input list L
was not sorted. This can be a benefit sometimes if the groups should in fact be separate.
With unique counts
If unique group counts are desired, just sort the input list:
counts = [(i, len(list(c))) for i,c in groupby(sorted(L))]
print(counts)
Returns
[('a', 5), ('c', 1), ('d', 2), ('q', 1), ('t', 1)]
Note: For creating unique counts, many of the other answers provide easier and more readable code compared to the groupby
solution. But it is shown here to draw a parallel to the duplicate count example.
Answered 2023-09-20 20:56:14
Although it is very old question, since i didn't find a one liner, i made one.
# original numbers in list
l = [1, 2, 2, 3, 3, 3, 4]
# empty dictionary to hold pair of number and its count
d = {}
# loop through all elements and store count
[ d.update( {i:d.get(i, 0)+1} ) for i in l ]
print(d)
# {1: 1, 2: 2, 3: 3, 4: 1}
Answered 2023-09-20 20:56:14
# Python >= 2.6 (defaultdict) && < 2.7 (Counter, OrderedDict)
from collections import defaultdict
def count_unsorted_list_items(items):
"""
:param items: iterable of hashable items to count
:type items: iterable
:returns: dict of counts like Py2.7 Counter
:rtype: dict
"""
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
# Python >= 2.2 (generators)
def count_sorted_list_items(items):
"""
:param items: sorted iterable of items to count
:type items: sorted iterable
:returns: generator of (item, count) tuples
:rtype: generator
"""
if not items:
return
elif len(items) == 1:
yield (items[0], 1)
return
prev_item = items[0]
count = 1
for item in items[1:]:
if prev_item == item:
count += 1
else:
yield (prev_item, count)
count = 1
prev_item = item
yield (item, count)
return
import unittest
class TestListCounters(unittest.TestCase):
def test_count_unsorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = count_unsorted_list_items(inp)
print inp, exp_outp, counts
self.assertEqual(counts, dict( exp_outp ))
inp, exp_outp = UNSORTED_WIN = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(dict( exp_outp ), count_unsorted_list_items(inp) )
def test_count_sorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = list( count_sorted_list_items(inp) )
print inp, exp_outp, counts
self.assertEqual(counts, exp_outp)
inp, exp_outp = UNSORTED_FAIL = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(exp_outp, list( count_sorted_list_items(inp) ))
# ... [(2,2), (4,1), (2,1)]
Answered 2023-09-20 20:56:14
Fastest is using a for loop and storing it in a Dict.
import time
from collections import Counter
def countElement(a):
g = {}
for i in a:
if i in g:
g[i] +=1
else:
g[i] =1
return g
z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]
#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))
#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))
#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))
Result
#Solution 1 - Faster
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153
#Solution 2 - Fast
Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418
#Solution 3 - Slow
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
Answered 2023-09-20 20:56:14
It was suggested to use numpy's bincount, however it works only for 1d arrays with non-negative integers. Also, the resulting array might be confusing (it contains the occurrences of the integers from min to max of the original list, and sets to 0 the missing integers).
A better way to do it with numpy is to use the unique function with the attribute return_counts
set to True. It returns a tuple with an array of the unique values and an array of the occurrences of each unique value.
# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True) # array([0, 1, 2, 3]), array([2, 3, 1, 2]
and then we can pair them as
dict(zip(a_uniq, counts)) # {0: 2, 1: 3, 2: 1, 3: 2}
It also works with other data types and "2d lists", e.g.
>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
Answered 2023-09-20 20:56:14
To count the number of diverse elements having a common type:
li = ['A0','c5','A8','A2','A5','c2','A3','A9']
print sum(1 for el in li if el[0]=='A' and el[1] in '01234')
gives
3
, not 6
Answered 2023-09-20 20:56:14
sum(bool(el[0]=='A' and el[1] in '01234') for el in li)
- anyone You can also use countOf
method of a built-in module operator
.
>>> import operator
>>> operator.countOf([1, 2, 3, 4, 1, 4, 1], 1)
3
Answered 2023-09-20 20:56:14
countOf
is implemented? How does it compare to the more obvious list.count
(which benefits from C implementation)? Are there any advantages? - anyone I would use filter()
, take Lukasz's example:
>>> lst = [1, 2, 3, 4, 1, 4, 1]
>>> len(filter(lambda x: x==1, lst))
3
Answered 2023-09-20 20:56:14
use %timeit to see which operation is more efficient. np.array counting operations should be faster.
from collections import Counter
mylist = [1,7,7,7,3,9,9,9,7,9,10,0]
types_counts=Counter(mylist)
print(types_counts)
Answered 2023-09-20 20:56:14
May not be the most efficient, requires an extra pass to remove duplicates.
Functional implementation :
arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{('c', 1), ('b', 3), ('a', 2)}
or return as dict
:
print(dict(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{'b': 3, 'c': 1, 'a': 2}
Answered 2023-09-20 20:56:14
Given a list X
import numpy as np
X = [1, -1, 1, -1, 1]
The dictionary which shows i: frequency(i) for elements of this list is:
{i:X.count(i) for i in np.unique(X)}
Output:
{-1: 2, 1: 3}
Answered 2023-09-20 20:56:14
set
provides the same functionality in a more general way without external dependency. - anyone mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))
this gives
{'compte': 1, 'france': 4, 'zied': 0}
Answered 2023-09-20 20:56:14
Alternatively, you can also implement the counter by yourself. This is the way I do:
item_list = ['me', 'me', 'you', 'you', 'you', 'they']
occ_dict = {}
for item in item_list:
if item not in occ_dict:
occ_dict[item] = 1
else:
occ_dict[item] +=1
print(occ_dict)
Output: {'me': 2, 'you': 3, 'they': 1}
Answered 2023-09-20 20:56:14
sum([1 for elem in <yourlist> if elem==<your_value>])
This will return the amount of occurences of your_value
Answered 2023-09-20 20:56:14
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
for i in test:
print('{} numbers {}'.format(i, test.count(i)))
Answered 2023-09-20 20:56:14
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
#turning the list into a temporary dataframe
test = pd.DataFrame(test)
#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts
then you can use df_counts.index
and df_counts.values
to get the data.
Answered 2023-09-20 20:56:14
x = ['Jess', 'Jack', 'Mary', 'Sophia', 'Karen',
'Addison', 'Joseph','Jack', 'Jack', 'Eric', 'Ilona', 'Jason']
the_item = input('Enter the item that you wish to find : ')
how_many_times = 0
for occurrence in x:
if occurrence == the_item :
how_many_times += 1
print('The occurrence of', the_item, 'in', x,'is',how_many_times)
Created a list of names wherein the name 'Jack' is repeated.
In order to check its Occurrence, I ran a for loop in the list named x
.
Upon each iteration, if the loop variable attains the value same that of received from the user and stored in the variable the_item
, the variable how_many_times
gets incremented by 1.
After attaining some value...We print how_many_times
which stores the value of the occurance of the word 'jack'
Answered 2023-09-20 20:56:14
def countfrequncyinarray(arr1):
r=len(arr1)
return {i:arr1.count(i) for i in range(1,r+1)}
arr1=[4,4,4,4]
a=countfrequncyinarray(arr1)
print(a)
Answered 2023-09-20 20:56:14
countfrequncyinarray([4, 4, 4])
will fail to count the 4
s. There is just no way to construct an input to count a -1
, sys.maxsize + 1
or similar entry. - anyone If you only want to get a single item's count, use the python in-built count method:
list = [2,5,4,3,10,3,5,6,5]
elmenet_count = list.count(5)
print('The count of element 5 is ', elmenet_count )
Output:
The count of element 5 is 3
Answered 2023-09-20 20:56:14