How can I select rows from a DataFrame based on values in some column in Pandas?
In SQL, I would use:
SELECT *
FROM table
WHERE column_name = some_value
To select rows whose column value equals a scalar, some_value
, use ==
:
df.loc[df['column_name'] == some_value]
To select rows whose column value is in an iterable, some_values
, use isin
:
df.loc[df['column_name'].isin(some_values)]
Combine multiple conditions with &
:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Note the parentheses. Due to Python's operator precedence rules, &
binds more tightly than <=
and >=
. Thus, the parentheses in the last example are necessary. Without the parentheses
df['column_name'] >= A & df['column_name'] <= B
is parsed as
df['column_name'] >= (A & df['column_name']) <= B
which results in a Truth value of a Series is ambiguous error.
To select rows whose column value does not equal some_value
, use !=
:
df.loc[df['column_name'] != some_value]
The isin
returns a boolean Series, so to select rows whose value is not in some_values
, negate the boolean Series using ~
:
df.loc[~df['column_name'].isin(some_values)]
For example,
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
print(df)
# A B C D
# 0 foo one 0 0
# 1 bar one 1 2
# 2 foo two 2 4
# 3 bar three 3 6
# 4 foo two 4 8
# 5 bar two 5 10
# 6 foo one 6 12
# 7 foo three 7 14
print(df.loc[df['A'] == 'foo'])
yields
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
If you have multiple values you want to include, put them in a
list (or more generally, any iterable) and use isin
:
print(df.loc[df['B'].isin(['one','three'])])
yields
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
Note, however, that if you wish to do this many times, it is more efficient to
make an index first, and then use df.loc
:
df = df.set_index(['B'])
print(df.loc['one'])
yields
A C D
B
one foo 0 0
one bar 1 2
one foo 6 12
or, to include multiple values from the index use df.index.isin
:
df.loc[df.index.isin(['one','two'])]
yields
A C D
B
one foo 0 0
one bar 1 2
two foo 2 4
two foo 4 8
two bar 5 10
one foo 6 12
Answered 2023-09-20 20:17:23
df.iloc[df[0] == some_value]
doesn't work, giving error Cannot index by location index with a non-integer key.
Though df.loc[df.iloc[:, 0] == 'some_value']
seems to work. - anyone df.loc[...]
when the ... is a boolean Series (which is what the ==
binary operator on a pair of Series
returns. And all DataFrame
s have column labels, even if you never set any. You can find out what they are with df.columns
. So wherever you have df[0]
you could use df[df.columns[0]]
. - anyone There are several ways to select rows from a Pandas dataframe:
df[df['col'] == value
] )df.iloc[...]
)df.xs(...)
)df.query(...)
APIBelow I show you examples of each, with advice when to use certain techniques. Assume our criterion is column 'A'
== 'foo'
(Note on performance: For each base type, we can keep things simple by using the Pandas API or we can venture outside the API, usually into NumPy, and speed things up.)
Setup
The first thing we'll need is to identify a condition that will act as our criterion for selecting rows. We'll start with the OP's case column_name == some_value
, and include some other common use cases.
Borrowing from @unutbu:
import pandas as pd, numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
... Boolean indexing requires finding the true value of each row's 'A'
column being equal to 'foo'
, then using those truth values to identify which rows to keep. Typically, we'd name this series, an array of truth values, mask
. We'll do so here as well.
mask = df['A'] == 'foo'
We can then use this mask to slice or index the data frame
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
This is one of the simplest ways to accomplish this task and if performance or intuitiveness isn't an issue, this should be your chosen method. However, if performance is a concern, then you might want to consider an alternative way of creating the mask
.
Positional indexing (df.iloc[...]
) has its use cases, but this isn't one of them. In order to identify where to slice, we first need to perform the same boolean analysis we did above. This leaves us performing one extra step to accomplish the same task.
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
Label indexing can be very handy, but in this case, we are again doing more work for no benefit
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
df.query()
APIpd.DataFrame.query
is a very elegant/intuitive way to perform this task, but is often slower. However, if you pay attention to the timings below, for large data, the query is very efficient. More so than the standard approach and of similar magnitude as my best suggestion.
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
My preference is to use the Boolean
mask
Actual improvements can be made by modifying how we create our Boolean
mask
.
mask
alternative 1
Use the underlying NumPy array and forgo the overhead of creating another pd.Series
mask = df['A'].values == 'foo'
I'll show more complete time tests at the end, but just take a look at the performance gains we get using the sample data frame. First, we look at the difference in creating the mask
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Evaluating the mask
with the NumPy array is ~ 30 times faster. This is partly due to NumPy evaluation often being faster. It is also partly due to the lack of overhead necessary to build an index and a corresponding pd.Series
object.
Next, we'll look at the timing for slicing with one mask
versus the other.
mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
The performance gains aren't as pronounced. We'll see if this holds up over more robust testing.
mask
alternative 2
We could have reconstructed the data frame as well. There is a big caveat when reconstructing a dataframe—you must take care of the dtypes
when doing so!
Instead of df[mask]
we will do this
pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
If the data frame is of mixed type, which our example is, then when we get df.values
the resulting array is of dtype
object
and consequently, all columns of the new data frame will be of dtype
object
. Thus requiring the astype(df.dtypes)
and killing any potential performance gains.
%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
However, if the data frame is not of mixed type, this is a very useful way to do it.
Given
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Versus
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
We cut the time in half.
mask
alternative 3
@unutbu also shows us how to use pd.Series.isin
to account for each element of df['A']
being in a set of values. This evaluates to the same thing if our set of values is a set of one value, namely 'foo'
. But it also generalizes to include larger sets of values if needed. Turns out, this is still pretty fast even though it is a more general solution. The only real loss is in intuitiveness for those not familiar with the concept.
mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
However, as before, we can utilize NumPy to improve performance while sacrificing virtually nothing. We'll use np.in1d
mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
Timing
I'll include other concepts mentioned in other posts as well for reference.
Code Below
Each column in this table represents a different length data frame over which we test each function. Each column shows relative time taken, with the fastest function given a base index of 1.0
.
res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
You'll notice that the fastest times seem to be shared between mask_with_values
and mask_with_in1d
.
res.T.plot(loglog=True)
Functions
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
Testing
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
Special Timing
Looking at the special case when we have a single non-object dtype
for the entire data frame.
Code Below
spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
Turns out, reconstruction isn't worth it past a few hundred rows.
spec.T.plot(loglog=True)
Functions
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)
spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
Testing
for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)
Answered 2023-09-20 20:17:23
The Pandas equivalent to
select * from table where column_name = some_value
is
table[table.column_name == some_value]
Multiple conditions:
table[(table.column_name == some_value) | (table.column_name2 == some_value2)]
or
table.query('column_name == some_value | column_name2 == some_value2')
import pandas as pd
# Create data set
d = {'foo':[100, 111, 222],
'bar':[333, 444, 555]}
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
# bar foo
# 0 333 100
# 1 444 111
# 2 555 222
# Output only the row(s) in df where foo is 222:
df[df.foo == 222]
# Shows:
# bar foo
# 2 555 222
In the above code it is the line df[df.foo == 222]
that gives the rows based on the column value, 222
in this case.
Multiple conditions are also possible:
df[(df.foo == 222) | (df.bar == 444)]
# bar foo
# 1 444 111
# 2 555 222
But at that point I would recommend using the query function, since it's less verbose and yields the same result:
df.query('foo == 222 | bar == 444')
Answered 2023-09-20 20:17:23
I find the syntax of the previous answers to be redundant and difficult to remember. Pandas introduced the query()
method in v0.13 and I much prefer it. For your question, you could do df.query('col == val')
.
Reproduced from The query() Method (Experimental):
In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
You can also access variables in the environment by prepending an @
.
exclude = ('red', 'orange')
df.query('color not in @exclude')
Answered 2023-09-20 20:17:23
.query
with pandas >= 0.25.0:Since pandas >= 0.25.0 we can use the query
method to filter dataframes with pandas methods and even column names which have spaces. Normally the spaces in column names would give an error, but now we can solve that using a backtick (`) - see GitHub:
# Example dataframe
df = pd.DataFrame({'Sender email':['ex@example.com', "reply@shop.com", "buy@shop.com"]})
Sender email
0 ex@example.com
1 reply@shop.com
2 buy@shop.com
Using .query
with method str.endswith
:
df.query('`Sender email`.str.endswith("@shop.com")')
Output
Sender email
1 reply@shop.com
2 buy@shop.com
Also we can use local variables by prefixing it with an @
in our query:
domain = 'shop.com'
df.query('`Sender email`.str.endswith(@domain)')
Output
Sender email
1 reply@shop.com
2 buy@shop.com
Answered 2023-09-20 20:17:23
For selecting only specific columns out of multiple columns for a given value in Pandas:
select col_name1, col_name2 from table where column_name = some_value.
Options loc
:
df.loc[df['column_name'] == some_value, [col_name1, col_name2]]
or query
:
df.query('column_name == some_value')[[col_name1, col_name2]]
Answered 2023-09-20 20:17:23
Faster results can be achieved using numpy.where.
For example, with unubtu's setup -
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
Timing comparisons:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
Answered 2023-09-20 20:17:23
In newer versions of Pandas, inspired by the documentation (Viewing data):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
Combine multiple conditions by putting the clause in parentheses, ()
, and combining them with &
and |
(and/or). Like this:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
Other filters
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
Answered 2023-09-20 20:17:23
Here is a simple example
from pandas import DataFrame
# Create data set
d = {'Revenue':[100,111,222],
'Cost':[333,444,555]}
df = DataFrame(d)
# mask = Return True when the value in column "Revenue" is equal to 111
mask = df['Revenue'] == 111
print mask
# Result:
# 0 False
# 1 True
# 2 False
# Name: Revenue, dtype: bool
# Select * FROM df WHERE Revenue = 111
df[mask]
# Result:
# Cost Revenue
# 1 444 111
Answered 2023-09-20 20:17:23
To add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index()
to make a new data frame with specified column having a particular value. E.g.,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
Running this gives:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
Answered 2023-09-20 20:17:23
drop=True
in .reset_index()
- anyone query()
callsIf the column name used to filter your dataframe comes from a local variable, f-strings may be useful. For example,
col = 'A'
df.query(f"{col} == 'foo'")
In fact, f-strings can be used for the query variable as well (except for datetime):
col = 'A'
my_var = 'foo'
df.query(f"{col} == '{my_var}'") # if my_var is a string
my_num = 1
df.query(f"{col} == {my_num}") # if my_var is a number
my_date = '2022-12-10'
df.query(f"{col} == @my_date") # must use @ for datetime though
numexpr
to speed up query()
callsThe pandas documentation recommends installing numexpr to speed up numeric calculation when using query()
. Use pip install numexpr
(or conda
, sudo
etc. depending on your environment) to install it.
For larger dataframes (where performance actually matters), df.query()
with numexpr
engine performs much faster than df[mask]
. In particular, it performs better for the following cases.
Logical and/or comparison operators on columns of strings
If a column of strings are compared to some other string(s) and matching rows are to be selected, even for a single comparison operation, query()
performs faster than df[mask]
. For example, for a dataframe with 80k rows, it's 30% faster1 and for a dataframe with 800k rows, it's 60% faster.2
df[df.A == 'foo']
df.query("A == 'foo'") # <--- performs 30%-60% faster
This gap increases as the number of operations increases (if 4 comparisons are chained df.query()
is 2-2.3 times faster than df[mask]
)1,2 and/or the dataframe length increases.2
Multiple operations on numeric columns
If multiple arithmetic, logical or comparison operations need to be computed to create a boolean mask to filter df
, query()
performs faster. For example, for a frame with 80k rows, it's 20% faster1 and for a frame with 800k rows, it's 2 times faster.2
df[(df.B % 5) **2 < 0.1]
df.query("(B % 5) **2 < 0.1") # <--- performs 20%-100% faster.
This gap in performance increases as the number of operations increases and/or the dataframe length increases.2
The following plot shows how the methods perform as the dataframe length increases.3
query()
Numexpr
currently supports only logical (&
, |
, ~
), comparison (==
, >
, <
, >=
, <=
, !=
) and basic arithmetic operators (+
, -
, *
, /
, **
, %
).
For example, it doesn't support integer division (//
). However, calling the equivalent pandas method (floordiv()
) works.
df.query('B.floordiv(2) <= 3') # or
df.query('B.floordiv(2).le(3)')
# for pandas < 1.4, need `.values`
df.query('B.floordiv(2).values <= 3')
1 Benchmark code using a frame with 80k rows
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*10000,
'B': np.random.rand(80000)})
%timeit df[df.A == 'foo']
# 8.5 ms ± 104.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df.query("A == 'foo'")
# 6.36 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df[((df.A == 'foo') & (df.A != 'bar')) | ((df.A != 'baz') & (df.A != 'buz'))]
# 29 ms ± 554 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo' & A != 'bar' | A != 'baz' & A != 'buz'")
# 16 ms ± 339 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[(df.B % 5) **2 < 0.1]
# 5.35 ms ± 37.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df.query("(B % 5) **2 < 0.1")
# 4.37 ms ± 46.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2 Benchmark code using a frame with 800k rows
df = pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*100000,
'B': np.random.rand(800000)})
%timeit df[df.A == 'foo']
# 87.9 ms ± 873 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo'")
# 54.4 ms ± 726 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[((df.A == 'foo') & (df.A != 'bar')) | ((df.A != 'baz') & (df.A != 'buz'))]
# 310 ms ± 3.4 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo' & A != 'bar' | A != 'baz' & A != 'buz'")
# 132 ms ± 2.43 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[(df.B % 5) **2 < 0.1]
# 54 ms ± 488 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("(B % 5) **2 < 0.1")
# 26.3 ms ± 320 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
3: Code used to produce the performance graphs of the two methods for strings and numbers.
from perfplot import plot
constructor = lambda n: pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*n, 'B': np.random.rand(8*n)})
plot(
setup=constructor,
kernels=[lambda df: df[(df.B%5)**2<0.1], lambda df: df.query("(B%5)**2<0.1")],
labels= ['df[(df.B % 5) **2 < 0.1]', 'df.query("(B % 5) **2 < 0.1")'],
n_range=[2**k for k in range(4, 24)],
xlabel='Rows in DataFrame',
title='Multiple mathematical operations on numbers',
equality_check=pd.DataFrame.equals);
plot(
setup=constructor,
kernels=[lambda df: df[df.A == 'foo'], lambda df: df.query("A == 'foo'")],
labels= ["df[df.A == 'foo']", """df.query("A == 'foo'")"""],
n_range=[2**k for k in range(4, 24)],
xlabel='Rows in DataFrame',
title='Comparison operation on strings',
equality_check=pd.DataFrame.equals);
Answered 2023-09-20 20:17:23
You can also use .apply:
df.apply(lambda row: row[df['B'].isin(['one','three'])])
It actually works row-wise (i.e., applies the function to each row).
The output is
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
The results is the same as using as mentioned by @unutbu
df[[df['B'].isin(['one','three'])]]
Answered 2023-09-20 20:17:23
If you want to make query to your dataframe repeatedly and speed is important to you, the best thing is to convert your dataframe to dictionary and then by doing this you can make query thousands of times faster.
my_df = df.set_index(column_name)
my_dict = my_df.to_dict('index')
After make my_dict dictionary you can go through:
if some_value in my_dict.keys():
my_result = my_dict[some_value]
If you have duplicated values in column_name you can't make a dictionary. but you can use:
my_result = my_df.loc[some_value]
Answered 2023-09-20 20:17:23
With DuckDB we can query pandas DataFrames with SQL statements, in a highly performant way.
Since the question is How do I select rows from a DataFrame based on column values?, and the example in the question is a SQL query, this answer looks logical in this topic.
Example:
In [1]: import duckdb
In [2]: import pandas as pd
In [3]: con = duckdb.connect()
In [4]: df = pd.DataFrame({"A": range(11), "B": range(11, 22)})
In [5]: df
Out[5]:
A B
0 0 11
1 1 12
2 2 13
3 3 14
4 4 15
5 5 16
6 6 17
7 7 18
8 8 19
9 9 20
10 10 21
In [6]: results = con.execute("SELECT * FROM df where A > 2").df()
In [7]: results
Out[7]:
A B
0 3 14
1 4 15
2 5 16
3 6 17
4 7 18
5 8 19
6 9 20
7 10 21
Answered 2023-09-20 20:17:23
You can use loc
(square brackets) with a function:
# Series
s = pd.Series([1, 2, 3, 4])
s.loc[lambda x: x > 1]
# s[lambda x: x > 1]
Output:
1 2
2 3
3 4
dtype: int64
or
# DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
df[lambda x: (x['A'] != 1) & (x['B'] != 30)]
Output:
A B
1 2 20
Answered 2023-09-20 20:17:23
Here are options using pandas built-in functions, similar to isin
.
df = pd.DataFrame({'cost': [250, 150, 100], 'revenue': [100, 250, 300]},index=['A', 'B', 'C'])
cost revenue
A 250 100
B 150 250
C 100 300
Compare DataFrames for equality elementwise
df[df["cost"].eq(250)]
cost revenue
A 250 100
Compare DataFrames for greater than inequality or equality elementwise.
df[df["cost"].ge(100)]
cost revenue
A 250 100
B 150 250
C 100 300
Compare DataFrames for strictly less than inequality elementwise.
df[df["cost"].lt(200)]
cost revenue
B 150 250
C 100 300
Answered 2023-09-20 20:17:23
Great answers. Only, when the size of the dataframe approaches million rows, many of the methods tend to take ages when using df[df['col']==val]
. I wanted to have all possible values of "another_column" that correspond to specific values in "some_column" (in this case in a dictionary). This worked and fast.
s=datetime.datetime.now()
my_dict={}
for i, my_key in enumerate(df['some_column'].values):
if i%100==0:
print(i) # to see the progress
if my_key not in my_dict.keys():
my_dict[my_key]={}
my_dict[my_key]['values']=[df.iloc[i]['another_column']]
else:
my_dict[my_key]['values'].append(df.iloc[i]['another_column'])
e=datetime.datetime.now()
print('operation took '+str(e-s)+' seconds')```
Answered 2023-09-20 20:17:23